If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+500X-7500=0
a = 1; b = 500; c = -7500;
Δ = b2-4ac
Δ = 5002-4·1·(-7500)
Δ = 280000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280000}=\sqrt{40000*7}=\sqrt{40000}*\sqrt{7}=200\sqrt{7}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(500)-200\sqrt{7}}{2*1}=\frac{-500-200\sqrt{7}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(500)+200\sqrt{7}}{2*1}=\frac{-500+200\sqrt{7}}{2} $
| -13x-123=174-4x | | 4^=3/2x+4 | | -256+a=482+a | | x2/3=360 | | –9(–2w–9)=19w+1 | | 4(m+12)=24 | | 2x+5(-1/11)=-3 | | 3(55+p)=870 | | 6a×4a=a | | 8x-5(13-x)=0 | | 0=7(s−2)−13 | | 2x=23-72 | | 6·x+5=31 | | p−8.3=5.6 | | −10−2x=−22 | | 4x=6(3x+2) | | X3-2x2+3x=110 | | (4x+2)^-1=0 | | 11x²=20 | | 5y+(-7)=23 | | 4x-120000x^-2=0 | | A=-22+3b | | 3(3x+1)=2(8-x) | | 23-x=44 | | 0=2x^2+3x+15 | | 5–3(7n+8)= | | 32=d-17 | | 5m-10=2m+20 | | 7+3=2y | | 3^x-3^x+2=-72 | | 5x-10=6x+35x-106x+3 | | -x⁵+5x+1=0 |